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Abstract The first aim of this paper is to give an overview of the contracted equations
theory (Valdemoro in Adv Chem Phys 134. Wiley, New York, 2007) leading to the
description of the G-particle-hole Hypervirial equation (GHV) (Alcoba et al. in Int J
Quantum Chem 109:3178, 2009; 111:937, 2011; J. Phys. Chem. A 115:2599, 2011;
Valdemoro et al. in Int J Quantum Chem 109:2622, 2009; 111:245, 2011). Our second
aim here is to show the suitability to combine the GHV method with the Hermitian
Operator (HO) method of Bouten et al. (Nucl Phys A 202:127, 1973; 221:173, 1974)
for obtaining various energy differences of a system spectrum when the G-particle-
hole matrix and the energy of an almost mono-configurational state is known. Two
simple applicative examples of the combined GHV-HO performance are reported.
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These examples constitute a preliminary test showing that, provided that a G-parti-
cle-hole matrix corresponding to a conveniently chosen mainly mono-configurational
state is known, this combined method can yield an accurate energy value for a highly
correlated state which would be hard to obtain directly with the GHV.

Keywords Correlation matrix · G-particle-hole matrix · Electronic correlation
effects · Hypervirial of the G-particle-hole matrix · Hermitian operator method

1 General introduction

To avoid the search for the N -electron wavefunction in the study of the structure
of electronic systems, looking instead for the second-order reduced density matrix
(2-RDM), has been an old pursuit of mathematicians, physicists and quantum-
chemists. There is a large bibliography on this subject which the interested reader
may find in the books of Davidson [1] and Coleman and Yukalov [2] as well as in
many proceedings and reviews [3–7]. Let us just refer explicitly here to the basic works
which were published in the fifties by Husimi [8], Löwdin [9], Mayer [10], McWeeny
[11], Ayres [12] and Coulson [13]. These papers and in particular the landmark papers,
published in the early sixties by Coleman [14] about the RDMs N -representability
conditions and by Garrod and Percus [15] who studied the G-particle-hole matrix, set
the basis for subsequent work.

A fruitful line of work in RDM theory consists in looking for the matrix represen-
tation in the 2-electron space of the fundamental quantum-mechanical equations, in
particular of the Schrödinger (SE) and Liouville (LE) equations and to try to solve
them. To this end, two alternative techniques were applied: to integrate these equations
over (N − 2) electron variables or to apply a general Matrix Contracting Mapping
(MCM) to the N -electron space representation of the equation considered, in order
to get its 2-electron space contracted form. The integration technique was simul-
taneously applied by Nakatsuji [16] and Cohen and Frishberg [17] in 1976. These
authors obtained an equation which they named density equation (DE) and hierarchy
equation, respectively. Nakatsuji proved that the DE is equivalent (by the necessary
and sufficient condition) to the SE. The drawback of this equation is that it has a hier-
archy character which renders it operationally indeterminate [18], since it not only
depends on the 2-order RDM but also on the 3- and 4-order RDMs. The matrix con-
tracting technique was applied in 1983 by Valdemoro [19,20] who reported a general
form of the MCM. The MCM was first applied to the N -electron representation of a
spin-projected-Hamiltonian operator in order to study the properties of this analyti-
cally averaged matrix and its corresponding operator [21–25]. Then, in 1986 the MCM
was applied to the LE and SE [26] thus generating the contracted Liouville (CLE) and
the contracted Schrödinger (CSE) equations. This latter equation was shown to be
equivalent to Nakatsuji’s integro-differential DE.

Both the CSE and CLE are, like the DE, hierarchy equations, which hindered the
development of this line of work until 1992, when Valdemoro [27] proposed an algo-
rithm for approximating the 2-RDM in terms of the 1-RDM. This approach was then
extended in order to construct higher-order RDMs in terms of the lower-order ones
[28,29]. By replacing into the 2-CSE the approximated expressions for the 3- and
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4-RDMs, the 2-CSE could be iteratively solved with a reasonable accuracy in 1994
by Colmenero and Valdemoro [30]. This started a very productive line of work in
the groups led respectively by Nakatsuji [31–34], Mazziotti [35–41] and Valdemoro
[42–68] which contributed considerably to improve this methodology. In 2009 [69]
the MCM was still rendered more general by replacing the auxiliary density matrix
involved in the MCM by an N -electron representation of any p-electron operator,
which permitted to generate a new set of contracted equations, one of which is the
G-particle-hole Hypervirial equation (GHV) with which we are concerned here.

In order to link our contribution at the 2006 Nice International Conference on Math-
ematical Methods for Ab Initio Quantum Chemistry [70] with the present line of work
of our group, the first aim of this paper is to give an overview of the contracted equa-
tions theory [7] (Sect. 3) leading to the description of the GHV equation [69,71–74]
(Sect. 4) whose solution yields the G-particle-hole matrix.

The second aim of this work is to obtain directly the set of excitation and de-
excitation energies of a given state in terms of the G-particle-hole matrix obtained by
solving the GHV equation. There has been a great deal of work on the direct deter-
mination of excitation energies in the past [75]. We cannot give here a general view
of the field and will just refer here to those papers which in some way are related to
our line of work. Let us thus mention the interesting Surjan’s proposal [76] for con-
straining the excited states to be orthogonal to the ground-state being excited. Also,
the set of papers which for our purpose are highly relevant were published in the
early seventies on the properties of the particle-hole subspace of a state [77–79]. In
one of these papers, Rosina [79] reported a 2-RDM based method which has recently
been sucessfully applied by Mazziotti [80,81]. But it is the paper published in 1973
by the nuclear physicists Bouten, Van Leuven, Mihailovich and Rosina [77] which is
at the center of our work here. In this seminal and outstanding paper, the authors pro-
pose the Hermitian operator (HO) method for obtaining the transition energies from
a ground-state. This paper, if not ignored, was somewhat overlooked for many years
because the HO method needs as input data the G-particle-hole matrix of the state
being excited and at that time no reliable method for obtaining this matrix had yet
been developed. The present situation is now completely different because the GHV
equation yields an accurate G-particle-hole matrix whenever the ground or excited
state considered is mostly mono-configurational. Therefore, by combining the GHV
and the HO method one may not only obtain the excitation energies of the ground-
state but also obtain the de-excitations of an excited state. As we describe in Sect. 5,
the combined GHV-HO constitutes a powerful tool for an indirect determination of
multi-configurational states energy which are otherwise hard to obtain. In Sect. 6, two
simple and preliminary test calculations are reported. One of this examples applies
particle-hole excitations to the singlet ground-state of the LiH molecule at its equi-
librium internuclear distance thus obtaining accurate energy values for the excited
states. The other calculation considers the LiH molecule far from equilibrium. In this
latter case, the ground-state energy obtained with the GHV equation is not sufficiently
accurate. On the other hand, when instead of applying the GHV-HO method upon
the ground-state one applies it to the first triplet excited state with spin projection
Ms = 1 the result obtained is excellent not only for the excited states but also for the
ground-state. Some final comments conclude this paper.
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2 Notation and theoretical background

2.1 Basic definitions

In second-quantization and in the occupation number representation [82] the 1- and
2-order reduced density matrices (1- and 2-RDM) definitions are, respectively:

1Di;l = 〈�| a†
i al |�〉, 2Di j;kt = 1

2! 〈�| a†
i a†

j at ak |�〉 = 1

2! 〈�| 2�̂i j;kt |�〉
(1)

where the operator’s labels refer to the elements of a finite basis set of 2K ortho-
normal spin-orbitals and where 2�̂ is the 2-body density operator. The p-order hole
reduced density matrices (p-HRDM) result from taking the expectation value of a
string of operators where the annihilators are on the left of the creators. The main
N -representability conditions [14,15,83,84] that these RDMs must satisfy are:

• The 1- and 2-RDM as well as the 1-and 2-HRDM, denoted by 1D̄ and 2D̄, are
Hermitian positive semi-definite matrices.

• The 1-RDM is derived from the 2-RDM by contraction. Similarly, the 1-HRDM
is derived from the 2-HRDM.

• The fermion algebra imposes a set of inter-relations among the elements of these
matrices. The main relation is

1D̄i;l + 1Di;l = δi;l (2)

which sets the bounds for these positive semi-definite matrices’ roots. Many other
fermion relations have been reported [48].

Let us now recall that the 2-RDM may be decomposed as [44]:

2! 2Dpq;tv ≡ 1Dp;t 1Dq;v − δq,t
1Dp;v + 2Cpq;tv (3)

where

2Cpq;tv =
∑

�′ �=�

〈�| a†
pat |�′〉 〈�′| a†

qav |�〉 ≡ 〈�|a†
pat Q̂ a†

qav |�〉 (4)

Here Q̂ is the orthogonal complement of the projection operator P̂ = |�〉 〈�| on the
space of the state being studied.

The first term of the r.h.s. of Eq. (3) describes the product of two independent one-
body probabilities. The second and third terms represent the exchange-correlation
contributions to the 2-RDM. Hence, the only term which has an irreducible two-body
character is the 2C which we denote 2-order correlation matrix (2-CM) [44–68]. Un-
like the 2-RDM, from which it is derived, the 2-CM matrix is not a Hermitian positive
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semi-definite matrix. There is, however, a closely related 2-order matrix, the G-parti-
cle-hole matrix, initially reported and studied by Garrod and Percus [15] such that

2Cpq;tv ≡ Gpt;vq (5)

which is Hermitian and positive semi-definite. This G-particle-hole property is what
is generally called the G N -representability condition [15,84].

The operators 2Ĉ and Ĝ corresponding to these two matrices are defined as:

2Ĉ pq;tv = a†
p at Q̂ a†

q av = Ĝ pt;vq (6)

The non-vanishing contractions of the G-particle-hole matrix generate the 1-RDM
and the 1-HRDM [53,54,85,86].

This brief account of the 1- and 2-order reduced matrices shows that, although each
of these matrices has its own identity and its own properties, they are so interrelated
that when one knows a 2-order matrix all the other 2- and 1-order matrices can be
derived from it [53]. That is why according to the type of information that is available
or the formal difficulties of the problem under study, one may choose which of these
second-order matrices is more convenient.

For some years our interest has been centered on the G-particle-hole matrix because
it is the irreducible 2-body part of the 2-RDM and thus carries the information about
that part of the electronic correlation which cannot be expressed in terms of the 1-RDM.
Relation (4) shows that this two-body matrix depends on all the system’s spectrum
virtual transitions of the two electrons involved. It must, however, be recalled here that
the second-order cumulant 2� [36,87,88],

2�i j;kl = − 1D̄ j;k 1Di;l + 2Ci j;kl ≡ 2Di j;kl − 1Di;k 1D j;l + 1Di;l 1D j;k (7)

which has the same symmetry properties than the 2-RDM, plays a similarly active
part. Note that the first term of the r.h.s under the action of the Hamiltonian will give
rise to an electron-hole polarization. That is, the cumulant groups the two terms which
describe two-different correlation mechanisms, i.e. an electron-hole polarization and
the two-electron virtual transitions.

The decomposition of higher-order p-RDMs may be carried out in a similar way
as in the 2-RDM case [46]. These decomposition generate a set of structural varieties
of p-body CMs and G-matrices describing different p-body correlation effects. Both
the p-CM and p-G family of matrices have very interesting properties [44,47,48,51–
55,58,59,63–66,68,71]. We will just consider here those 3-CMs which appear in the
GHV equations theory.

(3;2,1)Ci jm;pqt = 〈�| a†
i a†

j aq ap Q̂ a†
m at |�〉 ≡ 〈�| (3;2,1)Ĉi jm;pqt |�〉 (8)

(3;1,1,1)Ci jm;pqt = 〈�| a†
i ap Q̂ a†

j aq Q̂ a†
m at |�〉 ≡ 〈�| (3;1,1,1)Ĉi jm;pqt |�〉 (9)

The numbers appearing in the upper-left label have the following meaning: in the
(3;2,1)C case, the first one, 3, denotes that it is a 3-CM; the second one, 2, denotes the
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order of the density operator preceding the Q̂ operator; and the last number denotes the
order of the density operator following Q̂. Similar notation follows for the (3;1,1,1)C.

2.2 The Hamiltonian operator

The form of the Hamiltonian used here is

Ĥ = 1

2

∑

p,q,t,v

0Hpq;tv a†
p a†

q av at (10)

where

0Hpq;tv = δp,t εq;v + δq,v εp;t
N − 1

+ 〈pq|tv〉 (11)

and where εq;v and 〈pq|tv〉 are 1- and 2-electron integrals respectively. The 2-electron
integrals are written in the 〈12|12〉 notation.

2.3 A state energy and correlation energy

Let us now conclude this section by recalling that the energy of a state �, when one
knows the 2-RDM of that state, is given by

E� =
∑

p,q,t,v

0Hpq;tv 2D�
tv;pq (12)

and, since we have seen that the cumulant groups the two types of correlation energy,
the absolute definition of the correlation energy is

ECorr
� =

∑

p,q,t,v

0Hpq;tv 2��
tv;pq

≡
∑

p,q,t,v

0Hpq;tv
(

2D�
tv;pq − 1D�

t;p
1D�

v;q + 1D�
t;q

1D�
v;p

)
(13)

which vanishes when � is a Slater determinant. The variationally optimum Slater
determinant, the Hartree-Fock approximation, is usually taken as reference in many
calculations involving correlation effects.

3 Outlook of the different contracted equations obtained by applying
the density and the correlation matrix contracting mapping

In this section an overview is given of the different second-order equations which
can be obtained by applying the generalised MCM to the matrix representation of
important Quantum-Mechanical N -electron equations.
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3.1 The matrix contracting mapping

Let us consider a general matrix expression, represented in the N -electron space,
N M(�, Ô), where � is a N -electron wavefunction and Ô is an operator (e.g. the
Hamiltonian operator, Ĥ , the total spin-squared operator, Ŝ2, etc.). This matrix may
be contracted into the p-electron space (with p < N ) by applying to it a linear MCM
whose general expression is

∑

�,�

N M�;� 〈�| pT̂λ;γ |�〉 = pMλ;γ (14)

where pT̂ is a p-electron operator and {�,�, . . .} and {λ, γ, . . .} represent the ele-
ments of complete basis set of states of N and p electrons respectively. As mentioned
above, this MCM was reported for pT̂ = 2�̂, the second-order density operator,
by Valdemoro in 1983 [19,20] and later applied to the matrix representation of the
Schrödinger equation, thus obtaining the second-order Contracted Schrödinger Equa-
tion (2-CSE) [26]. After some simple algebra one obtains the compact form of this
equation:

〈�| Ĥ 2�̂λ;γ |�〉 = E�
2D�

λ;γ (15)

When pT̂ = 2Ĉ one obtains the second-order Correlation Contracted Schrödinger
Equation (2-CCSE) [55] whose compact expression is:

〈�| Ĥ 2Ĉλ;γ |�〉 = E�
2C�

λ;γ (16)

Both the 2-CSE and the 2-CCSE share an important property. Thus, Nakatsuji [16]
and later on Mazziotti [35] proved that the CSE is rigorously equivalent to the SE.
In the same way as Nakatsuji, Alcoba found the same equivalence [55] between the
2-CCSE and the SE.

We will now analyse what happens when one applies the MCM to the N -electron
density Hypervirial equation (N -HV), which is a particular case of the LE. Let us first
consider the contraction of this equation, using pT̂ = (3;1,1,1)Ĉ , to the 3-electron
space. The resulting equation, the 3-GHV, which depends on a 4-CM matrix, can be
shown to share with the 2-CSE and 2-CCSE the important property that it is equiva-
lent to the SE [71]. This property has not however been demonstrated for the equation
obtained when using MCM with the pT̂ = 3�̂ as the auxiliary matrix.

Finally, the two D- and G-particle-hole Hyperviral equations, obtained when the
contraction of the N -HV is carried out up to the 2-electron space, the D-Hypervirial
equation and the GHV equation, constitute a necessary but not sufficient condition for
their solutions to be Hamiltonian eigenstates. Levy and Berthier [89] referred to the
D-Hypervirial as the generalized Brillouin condition and Kutzelnigg [90–92] reported
how to implement this generalized condition for the construction of correlated wave-
functions. These two equations can also be identified with the anti-Hermitian part
of the 2-CSE and 2-CCSE respectively which is why Mazziotti has preferred to call
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ACSE the D-Hypervirial. This author reported in 2006 an iterative method for solving
this equation [93,94] which gave very good results [95–100].

As mentioned above, the 3-order GHV’s solutions are exact while no such property
has been proven for the 3-order ACSE. Moreover, it has also been shown that, while
solving the (2-order) GHV implies that the ACSE [69], the 1-CSE and the 1-HV are
also solved, the inverse is not true [69,73]. It follows therefore that the GHV is a more
demanding equation than the ACSE.

The main features of these equations are summarised in the Synopsis.
After this schematic overview of the properties of the four main contracted equa-

tions which have been obtained by applying the two types of MCM to important matrix
relations represented in the N -electron space, we now focus on the GHV equation,
whose solution yields the G-particle-hole correlation matrix.

SYNOPSIS OF THE MAIN CONTRACTED EQUATIONS
The table is organised in the following way:

Acronym

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Name
pT̂ operator
Conditions implied by the equation
Matrices involved
Main research groups

2-CSE

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Contracted Schrödinger equation
2T̂ = a†

p a†
q as ar

Necessary and sufficient
Depends on the 2-, 3-, 4-RDM
Nakatsuji, Cohen, Frishberg, Valdemoro, Mazziotti, Harriman

ACSE

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
Anti-Hermitian Contracted Schrödinger equation
2-order density Hypervirial equation

2T̂ = a†
p a†

q as ar

Necessary
Depends on the 2-, 3-RDM
Mazziotti, Kutzelnigg

2-CCSE

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Correlation Contracted Schrödinger equation
2T̂ = a†

par Q̂ a†
qas

Necessary and sufficient
Depends on the 2-, 3-, 4-CM
Alcoba, Valdemoro, Tel, Pérez-Romero

3-GHV

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Hypervirial of the 3-G-particle-hole or 3-CM operator
3T̂ = a†

pas Q̂ a†
qar Q̂ a†

t au

Necessary and sufficient
Depends on the 2-, 3-, 4-CM
Alcoba, Valdemoro, Tel, Pérez-Romero

GHV

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Hypervirial of the G-particle-hole or 2-CM operator
2T̂ = a†

par Q̂ a†
qas

Necessary, stronger than ACSE
Depends on the 2-, 3-CM
Alcoba, Valdemoro, Tel, Pérez-Romero
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4 Solving the GHV

The compact form of the GHV equation [69] is:

〈� |
[

Ĥ , Ĝ
]
| � 〉 = 0 (17)

When developing this relation one obtains its explicit form,

∑

p,q,r,s

0Hrs;pq
(3;2,1)Cpq j;rsl

1Di;m −
∑

p,q,r,s

0Hpq;rs
(3;2,1)Crsm;pqi

1Dl; j

+ 2
∑

p,r,s

0Hrs;pm
(3;2,1)Ci pj;rsl + 2

∑

p,q,r

0Hpq; jr
(3;2,1)Clrm;pqi

+ 2
∑

p,q,r

0Hir;pq
(3;2,1)Cpq j;mrl + 2

∑

q,r,s

0Hql;rs
(3;2,1)Crsm; jqi = 0 (18)

The N -representable and Spin-representable [43] 1- and 2-order matrices corre-
sponding to an approximate mono-configurational eigenstate are taken as trial func-
tions in order to construct the elements of this matrix equation. These trial matrices
are the input data for the constructing algorithms yielding the 3-CM or, equivalently,
the 3-order cumulant, which is the only approximation introduced. The GHV equa-
tion (18) thus constructed does not vanish and yields a 2-order error-matrix A. In
order to iteratively solve the GHV equation and reach an accurate approximation of
the exact G-particle-hole matrix one proceeds as follows. The function �, or alterna-
tively the operator Ĝ, is transformed through the action of a unitary operator. In this
way the problem of solving the vanishing GHV equation can be transformed into find-
ing the solution of a system of differential equations. By adapting to the GHV case
the procedures developed by Kutzelnigg [75,90–92] and in particular by Mazziotti
[93,94] one obtains [69,72,74]:

(�Gn+1)im;l j = 〈� |
[

Ân, Ĝim;l j

]
| � 〉 (19)

where (�G)n+1 is the error of the G-particle-hole, after the nth iteration and

Ân =
∑

i,m,l, j

An
im,l j Ĝim;l j (20)

is the anti-Hermitian operator appearing in the exponent of the unitary operator used
in the transformation. Finally, in order to accelerate convergence we apply Fehlberg’s
method [101,102]. A detailed description of this methodology is given in [72,74].

When the state � is mostly mono-configurational, which generally is the case in
ground-states and in the highest spin projection multiplet states, the accuracy of the
G-particle-hole matrix is excellent [69,72–74]. By contracting the G-particle-hole
matrix thus obtained the 1- and 2-RDM as well as the energy E� of the state may also
be calculated.
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5 Obtaining the set of excitation energies in terms
of the G-particle-hole matrix

As has been mentioned in the Introduction, in their 1973 work Bouten, Van Leuven,
Mihailovich and Rosina [77] reported the HO method for obtaining transition energies
to the excited states from the ground-state. The input data needed in the HO method is
the G-particle-hole matrix which happens to be the output of solving the GHV equa-
tion. That is why we propose here a combination of both methods. Thus, whenever
the state to be excited, or de-excited, by the HO is mostly a mono-configurational one,
the GHV equation yields a highly accurate G-particle-hole matrix which is what is
needed as input in the HO method.

Although the idea of Bouten et al. was to apply the HO upon a system ground-state,
we will show here that the HO may also be applied to an excited state, which results
in a new and powerful tool for indirectly studying highly correlated states. Thus, since
the GHV method is not variational, it permits the study of excited almost mono-config-
urational states, which allows us to extend the applicability of the combined GHV-HO
method to quasi mono-configurational states, were they ground or excited states.

5.1 The Hermitian Operator method

In this section we recall the main steps of the HO method which has been implemented
into our computational code and whose preliminary results are reported in the follow-
ing section. Let us start by rewriting the Q̂ operator appearing in the G-particle-hole
matrix expression, corresponding to a state �, in an equivalent form:

Q̂ = Î − |�〉 〈� | (21)

which is an Hermitian and an idempotent operator. Therefore, a G-particle-hole matrix
element can be rewritten as:

G�
pt;vq ≡ 〈� | a†

pat ( Î − |�〉 〈� |) ( Î − |�〉 〈� |) a†
qav | �〉

= 〈� | (a†
pat − 1Dp;t ) ( a†

qav − 1Dq;v) | �〉 (22)

which is the form used in the HO method.
As has been mentioned, the original aim of the HO method was to derive the ener-

gies of excited states when one knows the G-particle-hole matrix of this system’s
ground-state. The work of Bouten, Van Leuven, Mihailovich and Rosina [77] starts by
creating Hermitian mono-excitations Ŝ upon the ground-state, �, and then deriving
the equations which set the appropriate constraints.

Let us define an excitation operator Ŝ such that

Ĥ Ŝ |� 〉 = E� |�〉 (23)
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where � is an excited eigenstate generated by the excitation operator Ŝ. The exact
form of Ŝ is:

Ŝ = |� 〉 〈� | + |� 〉〈� | (24)

which is Hermitian and generates:

〈� | (Ŝ ′ Ĥ Ŝ + Ŝ Ĥ Ŝ ′ ) | � 〉 = E� 〈� | (Ŝ ′ Ŝ + Ŝ Ŝ ′ ) | � 〉 (25)

which is equivalent to

〈� |
[
Ŝ ′ , [ Ĥ , Ŝ ]

]
| � 〉 = ( E� − E� ) 〈� | (Ŝ ′ Ŝ + Ŝ Ŝ ′ ) | � 〉 (26)

valid for any operator Ŝ ′ and, particularly, when Ŝ ′ = Ŝ.
Bouten et al. [77] proposed to approximate Ŝ as:

Ŝ =
∑

t,v

{
c+

t,v ( a†
t av − 1Dt;v + a†

v at − 1Dv;t )

+ i c−
t,v ( a†

t av − 1Dt;v − a†
v at + 1Dv;t )

}
(27)

where the c symbols represent real coefficients. That is, the action upon � of the
mono-excitation operator followed by the implicit projector Q̂ generates a state �

orthogonal to �. Replacing this definition into (26) one obtains the matrix equation

(H(++) H(+−)

H(−+) H(−−)

) (
c+
c−

)
= 2 ( E� − E� )

(G(++) G(+−)

G(−+) G(−−)

)(
c+
c−

)
(28)

In the case considered here, all the elements appearing in equation (26) are real. In
consequence, as Bouten et al. pointed out [77] , one obtains a system of two decoupled
equations:

H(++) c+ = 2 ( E� − E� ) G(++) c+ (29a)

H(−−) c− = 2 ( E� − E� ) G(−−) c− (29b)

where G(++) and G(−−) are functionals of the G-particle-hole matrix corresponding
to state �. Since the G-particle-hole is a symmetric and positive semi-definite matrix,
the G(++) and G(−−) may be expressed as:

G(++)
i j;pq = Gi j;pq + Gi j;qp + G j i;pq + G j i;qp (30a)

G(−−)
i j;pq = Gi j;pq − Gi j;qp − G j i;pq + G j i;qp (30b)
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The matrices H(++) and H(−−) have the following compact forms:

H(++)
i j;pq = 〈� |

[
a†

i a j − 1Di; j + a†
j ai − 1D j;i ,

[Ĥ , a†
paq − 1Dp;q + a†

qap − 1Dq;p]
]

| � 〉 (31a)

H(−−)
i j;pq = 〈� |

[
a†

i a j − 1Di; j − a†
j ai + 1D j;i ,

[Ĥ , a†
paq − 1Dp;q − a†

qap + 1Dq;p]
]

| � 〉 (31b)

For the general many-body case it can be shown that:

H(±±)
i j;pq = + 4

∑

r,s

{
H̃ jr;ps

2Dir;qs ± H̃ir;ps
2D jr;qs ± H̃ jr;qs

2Dir;ps + H̃ir;qs
2D jr;ps

}

− 2
∑

r

{
δq,i (H̃ 2D)pr; jr ± δq, j (H̃ 2D)pr;ir ± δp,i (H̃ 2D)qr; jr + δp, j (H̃ 2D)qr;ir

}

+ 2
{

(H̃ 2D)pi; jq ± (H̃ 2D)pj;iq ± (H̃ 2D)qi; j p + (H̃ 2D)q j;i p

}
(32)

where

H̃ir;ps = 0Hir;ps − 0Hri;ps ≡ 0Hir;ps − 0Hir;sp (33)

As can be appreciated, only second-order matrices are involved in these final for-
mulae.

Note that in order to solve the system of the two uncoupled equations (29) one must
first remove from the G-particle-hole matrix, which is the metric matrix in the particle-
hole space, its zero valued roots and then solve the resulting generalized eigenvalue
problem. In what follows the solutions of the equation corresponding to the H(++),
i.e. to the symmetric particle-hole subspace are denoted by the symbol SHO, and those
obtained within the anti-symmetric subspace are denoted by the symbol AHO.

It is also important to check the accuracy of the expectation values of the Ŝ2 and M̂s

operators. This is achieved by replacing the Hamiltonian operator by Ŝ2 in equations
(23)–(33), which is easily carried out by replacing the 0H elements by the corre-
sponding elements of the matrix representation of Ŝ2 and the energy difference by the
difference in the S(S + 1) values of the two states � and �. In order to determine
this difference one uses the same coefficients c+ and c− obtained when solving the
system of equations corresponding to the Hamiltonian. Similar considerations follow
for the M̂s operator.

6 Determining the energy of the LiH molecule states at two different
internuclear distances with the combined GHV-HO method

Here we will report the results obtained in the study of the energy spectrum of the
LiH molecule. The basis set used is the STO-3G. The PSI3 program [103] has been
used to calculate the integrals matrix 0H and the initial values of all the matrices
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required. As mentioned above, there are two different possible approaches aiming
at describing different but overlapping particle-hole subspaces. Thus, we will first
consider the case which Bouten et al. had in mind when they developed their HO
method. That is, when the particle-hole excitation operators act on the ground-state.
Another possibility exists: to extend the original HO method by having the particle-
hole excitation operators act upon an already excited state. That is, the choice of the
state studied with the GHV determines the G-particle-hole matrix entering into the
HO equations and consequently determines the states of the spectrum whose energy
will be obtained. These states are the elements of the particle-hole subspace of the
G-particle-hole matrix state. It all, therefore, hinges on choosing the system almost
mono-configurational states so that an accurate GHV can be obtained with the GHV
method and then apply the HO method in order to obtain the energy of the strongly
correlated states of the spectrum which could otherwise be hard to obtain.

6.1 The G-particle-hole matrix corresponds to the singlet LiH ground-state

In this first example the particle-hole excitation operators act upon the singlet ground-
state of the LiH molecule at its experimental equilibrium internuclear distance, 1.595
Angstrom [104]. In these conditions, the state is almost mono-configurational and, as
could be expected, the GHV gives an excellent result with an energy value error of only
2.300 × 10−5 Hartree. Using the G-particle-hole matrix corresponding to this state,
the energy of the excited states of this particle-hole subspace have been calculated. In
Table 1, we report the energy errors of the calculations carried out with the CIS, the
SHO and the AHO methods. The corresponding FCI energy values are also reported
in this table.

The results shown in Table 1 indicate that
• The accuracy of the CIS results is rather poor. This CI method takes explicitly

into account the same excitations than the HO method, therefore the CIS inferior
performance must be due to the fact that the HO method profits of the knowledge
of correlated ground-state G-particle-hole matrix.

• The SHO performs slightly better than the AHO except for states 5 and 6 which
are the highest singlet mono-excited states of the spectrum.

• It is interesting to note that the results for the triplet states are better than those
obtained for singlets.

• The slightly different energy values obtained for different members of some of
the triplets is due to the fact that in order to describe well some of these states,
particularly those with Ms = 0, higher-order excitations are needed.

The calculation of the expectation value of the Ŝ2 operator has also yielded in all
these cases excellent results with errors lower than 10−4.

6.2 The G-particle-hole matrix corresponds to the first triplet LiH state at a large
internuclear distance

At an internuclear distance of 4.595 Angstrom, the energy error in the evaluation of
the ground-state with the GHV method is 9.876 × 10−3 Hartree, which is not suffi-
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Table 1 Errors with respect to the FCI values of the LiH energy spectrum (in Hartree) obtained with CIS
and the GHV-HO method from the G-particle-hole matrix of the ground-state

State S, MS CIS SHO AHO FCI

g 0,0 −2.037 × 10−2 – – −7.882402

1 1,1 −3.404 × 10−2 −2.460 × 10−4 −1.025 × 10−3 −7.766418

1,0 −3.404 × 10−2 −1.025 × 10−3 −2.560 × 10−4 −7.766418

1,−1 −3.404 × 10−2 −2.560 × 10−4 −1.025 × 10−3 −7.766418

2 0,0 −5.265 × 10−2 −2.186 × 10−3 −1.931 × 10−2 −7.749216

3 1,1 −3.364 × 10−2 −3.980 × 10−4 −3.990 × 10−4 −7.716454

1,0 −3.364 × 10−2 −1.304 × 10−3 −1.302 × 10−3 −7.716454

1,−1 −3.364 × 10−2 −3.980 × 10−4 −3.990 × 10−4 −7.716454

4 1,1 −3.364 × 10−2 −3.990 × 10−4 −1.304 × 10−3 −7.716454

1,0 −3.364 × 10−2 −1.304 × 10−3 −1.302 × 10−3 −7.716454

1,−1 −3.364 × 10−2 −3.990 × 10−4 −1.304 × 10−3 −7.716454

5 0,0 −6.085 × 10−2 −1.625 × 10−3 −8.240 × 10−4 −7.696952

6 0,0 −6.085 × 10−2 −1.625 × 10−3 −8.240 × 10−4 −7.696952

7 1,1 −1.182 × 10−2 −9.900 × 10−5 −5.430 × 10−4 −7.482612

1,0 −1.182 × 10−2 −5.430 × 10−4 −1.090 × 10−4 −7.482612

1,−1 −1.182 × 10−2 −1.090 × 10−4 −5.430 × 10−4 −7.482612

The LiH internuclear distance is the experimental one, 1.595 Angstrom
The GHV energy error of the ground-state is −2.300 × 10−5 Hartree

ciently accurate. This is due to the fact that at this distance the ground-state is already
multi-configurational.

This second example is therefore a good test for our proposal for an extension of Bo-
uten et al. HO method. Therefore, in this calculation the HO excitation/de-excitation
operators act upon the first triplet state, with Ms = 1, of the LiH molecule. In gen-
eral the first multiplets with the highest spin projection are described by an almost
single-configurational wave-function even at large internuclear distances, and, as was
expected, the GHV gave in this case an energy value with an error of 2.200 × 10−6

Hartree. Using the G-particle-hole matrix corresponding to this state, the energy of
the mono-excited states have been calculated with the HO method. The results thus
obtained jointly with the FCI ones are reported in Table 2. These results indicate that

• The first and most important result is that the energy value error in the singlet
ground-state diminishes by three orders of magnitude with respect to the GHV
result.

• Another striking observation is that here, both the SHO and the AHO show a similar
performance.

• Here again the results for the triplet states are better than those obtained for singlets.

The expectation values of the Ŝ2 operator for the ground-state and for all the triplet
states are excellent. However, the three excited singlets have an incorrect < Ŝ2 >

(0.9938, 1.0001 and 1.0001). It is also interesting to note that the 3 and 4 triplets
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Table 2 Errors with respect to the FCI values of the LiH energy spectrum (in Hartree) obtained with the
GHV-HO method from the G-particle-hole matrix of the first triplet state with Ms = 1

State S, MS SHO AHO FCI

g 0,0 −9.000 × 10−6 −9.000 × 10−6 −7.782873

1 1,0 −2.000 × 10−6 −2.000 × 10−6 −7.782353

2 0,0 −1.138 × 10−3 −1.138 × 10−3 −7.698426

3 1,1 −1.930 × 10−4 −1.930 × 10−4 −7.697223

4 1,1 −1.930 × 10−4 −1.930 × 10−4 −7.697223

5 0,0 −1.660 × 10−4 −1.660 × 10−4 −7.697194

6 0,0 −1.660 × 10−4 −1.660 × 10−4 −7.697194

7 1,1 −1.930 × 10−4 −1.930 × 10−4 −7.696503

The LiH internuclear distance is 4.595 Angstrom
The GHV energy errors of the singlet ground-state and the first triplet state with Ms = 1 are −9.876×10−3

Hartree and −2.200 × 10−6 Hartree, respectively

become degenerate as well as the 5 and 6 singlet states at this close to dissociation
internuclear distance. This degeneracy is of the π type.

7 Concluding comments

The two preliminary examples just reported indicate the relevance of the combined
GHV-HO method not only in the calculation of almost single-configurational ground
and excited states but also in the study of strongly correlated states which, at present,
cannot be accurately studied except with very costly treatments. We realise that this
is just a preliminary test of the applicative possibilities of the GHV-HO combined
method. We are aware that calculations of strongly correlated states with extended
basis sets must be carried out in order to ascertain that this approach is fully reliable.
Another related matter, which needs to be prospected is to understand whether the
eigenvectors of the generalized eigensystem have a clear physical significance.
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